NUMERICAL ANALYSIS I
 Finding Roots

Surya Teja Gavva

BISECTION METHOD

Input:

1) A continuous function and two end points a and b such that $f(a)$ and $f(b)$ have opposite signs i.e., $f(a) f(b)<0$.
2) The number of iterations or the accuracy needed.

Output: An approximation to the root of $f(x)$ inside $[a, b]$.

Set $i=0, a_{i}=a$ and $b_{i}=b$.
Set $c_{i}=\frac{a_{i}+b_{i}}{2}$
If $f\left(c_{i}\right)=0$, then c_{i} is a zero
Else check the signs of $f\left(a_{i}\right) f\left(c_{i}\right)$ and $f\left(c_{i}\right) f\left(b_{i}\right)$
If $f\left(a_{i}\right) f\left(c_{i}\right)<0$, then $a_{i+1}=a_{i}, b_{i+1}=c_{i}$
If $f\left(c_{i}\right) f\left(b_{i}\right)<0$, then $a_{i+1}=c_{i}, b_{i+1}=b i$
and repeat with interval $\left[a_{i+1}, b_{i+1}\right]$
Error: The error after n iterations $\left|x-x_{n}\right|$ is bounded by the length of the interval $\left|a_{n}-b_{n}\right|$
We have $\left|a_{n}-b_{n}\right|=\frac{|b-a|}{2^{n}}$. So, the number of iterations to get an accuracy of ε is n such that $\frac{|b-a|}{2^{n}}<\varepsilon$, that is $n>\log _{2} \frac{|b-a|}{\varepsilon}$

Convergence: ALWAYS converges and the rate of convergence is linear.

$$
\left|x-x_{n+1}\right| \sim \frac{1}{2}\left|x-x_{n}\right|
$$

FALSE POSITION METHOD

Input:

1) A continuous function and two end points a and b such that $f(a)$ and $f(b)$ have opposite signs i.e., $f(a) f(b)<0$
2) The number of iterations or the accuracy needed

Output: An approximation to the root of $f(x)$ inside $[a, b]$
Set $i=0, a_{i}=a$ and $b_{i}=b$.
Set $c_{i}=\frac{a_{i} f\left(b_{i}\right)-b_{i} f\left(a_{i}\right)}{f\left(b_{i}\right)-f\left(a_{i}\right)}$
$\operatorname{If} f\left(c_{i}\right)=0$, then c_{i} is a zero
Else check the signs of $f\left(a_{i}\right) f\left(c_{i}\right)$ and $f\left(c_{i}\right) f\left(b_{i}\right)$
If $f\left(a_{i}\right) f\left(c_{i}\right)<0$, then $a_{i+1}=a_{i}, b_{i+1}=c_{i}$
If $f\left(c_{i}\right) f\left(b_{i}\right)<0$, then $a_{i+1}=c_{i}, b_{i+1}=b i$
and repeat with interval $\left[a_{i+1}, b_{i+1}\right]$
Convergence: ALWAYS converges and the rate of convergence is superlinear (if the root is not a multiple root, if the function is smooth-slower convergence for multiple roots).

$$
\left|x-x_{n+1}\right| \sim C\left|x-x_{n}\right|^{\frac{\sqrt{5}+1}{2}}, C=\left|\frac{f^{\prime \prime}(x)}{2 f^{\prime}(x)}\right|^{\frac{\sqrt{5}-1}{2}}
$$

NEWTON"S METHOD

Input:

1) A differentiable function and a point x_{0} "close" enough to the root.
2) The number of iterations or the accuracy needed

Output: An approximation to the root of $f(x)$ near x_{0}
Convergence: Doesn't always converge. Converges if x_{0} is close enough to the root. and the rate of convergence is quadratic (if the root is not a multiple root-slower convergence for multiple roots) if the function is smooth.

$$
\left|x-x_{n+1}\right| \sim C\left|x-x_{n}\right|^{2}, C=\left|\frac{f^{\prime \prime}(x)}{2 f^{\prime}(x)}\right|
$$

Algorithm:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right.}{f^{\prime}\left(x_{n}\right)}
$$

SECANT METHOD

Input:

1) A continuous function and points x_{0}, x_{1} "close" enough to the root.
2) The number of iterations or the accuracy needed

Output: An approximation to the root of $f(x)$ near x_{0}, x_{1}

Convergence: Doesn't always converge. Converges if x_{0}, x_{1} are close enough to the root. and the rate of convergence is superlinear (if the root is not a multiple root-slower convergence for multiple roots) if the function is smooth.

$$
\left|x-x_{n+1}\right| \sim C\left|x-x_{n}\right|^{\frac{\sqrt{5}+1}{2}}, C=\left|\frac{f^{\prime \prime}(x)}{2 f^{\prime}(x)}\right|^{\frac{\sqrt{5}-1}{2}}
$$

Algorithm:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{\frac{f\left(x_{n}\right)-f\left(x_{n-1}\right)}{x_{n}-x_{n-1}}}
$$

STEFFENSEN"S METHOD

Input:

1) A differentiable function and points x_{0} "close" enough to the root.
2) The number of iterations or the accuracy needed

Output: An approximation to the root of $f(x)$ near x_{0}, x_{1}

Convergence: Doesn't always converge. Converges if x_{0} is close enough to the root. and the rate of convergence is quadratic (if the root is not a multiple root-slower convergence for multiple roots).

Algorithm:

$$
\begin{gathered}
h=f\left(x_{n}\right) \\
g\left(x_{n}\right)=\frac{f\left(x_{n}+h\right)-f\left(x_{n}\right)}{h} \\
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{g\left(x_{n}\right)}
\end{gathered}
$$

FIXED POINT METHOD

Input: A differentiable function g and a point x_{0}
Output: An approximation to the fixed point of $g(x)$
Convergence: Doesn't always converge.
Converges if
a) g maps an interval $[a, b]$ to itself.
b) g is "contracting" that is $\left|g^{\prime}(x)\right|<k, k<1$

The convergence is linear.

$$
\left|x-x_{n+1}\right|<k\left|x-x_{n}\right|,
$$

Algorithm:

$$
x_{n+1}=g\left(x_{n}\right)
$$

AITKEN'S Δ^{2} METHOD

Input: A linearly convergent sequence p_{n} with $\lim _{n \rightarrow \infty} \frac{p-p_{n}}{p-p_{n+1}}<1$
Output: A sequence \hat{p}_{n} which converges faster than p_{n} to p
Definition The forward difference

$$
\begin{gathered}
\Delta p_{n}=p_{n+1}-p_{n} \\
\Delta^{2} p_{n}=\Delta\left(\Delta p_{n}\right)=p_{n+2}-2 p_{n+1}+p_{n}
\end{gathered}
$$

Algorithm:

$$
\begin{gathered}
\hat{p}_{n}=p_{n}-\frac{\left(p_{n+1}-p_{n}\right)^{2}}{p_{n+2}-2 p_{n+1}+p_{n}} \\
\hat{p}_{n}=p_{n}-\frac{\left(\Delta p_{n}\right)^{2}}{\Delta^{2} p_{n}}
\end{gathered}
$$

