NUMERICAL ANALYSIS I Finding Roots

Surya Teja Gavva

BISECTION METHOD

Input:

1) A continuous function and two end points a and b such that f(a) and f(b) have opposite signs i.e., f(a)f(b) < 0.

2) The number of iterations or the accuracy needed.

Output: An approximation to the root of f(x) inside [a, b].

Set $i = 0, a_i = a$ and $b_i = b$. Set $c_i = \frac{a_i + b_i}{2}$ If $f(c_i) = 0$, then c_i is a zero Else check the signs of $f(a_i)f(c_i)$ and $f(c_i)f(b_i)$ If $f(a_i)f(c_i) < 0$, then $a_{i+1} = a_i, b_{i+1} = c_i$ If $f(c_i)f(b_i) < 0$, then $a_{i+1} = c_i, b_{i+1} = b_i$ and repeat with interval $[a_{i+1}, b_{i+1}]$

Error: The error after *n* iterations $|x - x_n|$ is bounded by the length of the interval $|a_n - b_n|$ We have $|a_n - b_n| = \frac{|b - a|}{2^n}$. So, the number of iterations to get an accuracy of ε is *n* such that $\frac{|b - a|}{2^n} < \varepsilon$, that is $n > \log_2 \frac{|b - a|}{\varepsilon}$

Convergence: ALWAYS converges and the rate of convergence is linear.

$$|x - x_{n+1}| \sim \frac{1}{2}|x - x_n|$$

FALSE POSITION METHOD

Input:

1) A continuous function and two end points a and b such that f(a) and

f(b) have opposite signs i.e., f(a)f(b) < 0

2) The number of iterations or the accuracy needed

Output: An approximation to the root of f(x) inside [a, b]

Set $i = 0, a_i = a$ and $b_i = b$. Set $c_i = \frac{a_i f(b_i) - b_i f(a_i)}{f(b_i) - f(a_i)}$ $If f(c_i) = 0$, then c_i is a zero Else check the signs of $f(a_i) f(c_i)$ and $f(c_i) f(b_i)$ If $f(a_i) f(c_i) < 0$, then $a_{i+1} = a_i, b_{i+1} = c_i$ If $f(c_i) f(b_i) < 0$, then $a_{i+1} = c_i, b_{i+1} = b_i$ and repeat with interval $[a_{i+1}, b_{i+1}]$

Convergence: ALWAYS converges and the rate of convergence is superlinear (if the root is not a multiple root, if the function is smooth–slower convergence for multiple roots).

$$|x - x_{n+1}| \sim C|x - x_n|^{\frac{\sqrt{5}+1}{2}}, \ C = |\frac{f''(x)}{2f'(x)}|^{\frac{\sqrt{5}-1}{2}}$$

NEWTON"S METHOD

Input:

- 1) A differentiable function and a point x_0 "close" enough to the root.
- 2) The number of iterations or the accuracy needed

Output: An approximation to the root of f(x) near x_0

Convergence: Doesn't always converge. Converges if x_0 is close enough to the root. and the rate of convergence is quadratic (if the root is not a multiple root-slower convergence for multiple roots) if the function is smooth.

$$|x - x_{n+1}| \sim C|x - x_n|^2, \ C = |\frac{f''(x)}{2f'(x)}|$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

SECANT METHOD

Input:

- 1) A continuous function and points x_0, x_1 "close" enough to the root.
- 2) The number of iterations or the accuracy needed

Output: An approximation to the root of f(x) near x_0, x_1

Convergence: Doesn't always converge. Converges if x_0, x_1 are close enough to the root. and the rate of convergence is superlinear (if the root is not a multiple root-slower convergence for multiple roots) if the function is smooth.

$$|x - x_{n+1}| \sim C|x - x_n|^{\frac{\sqrt{5}+1}{2}}, \ C = |\frac{f''(x)}{2f'(x)}|^{\frac{\sqrt{5}-1}{2}}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{\frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}}$$

STEFFENSEN"S METHOD

Input:

1) A differentiable function and points x_0 "close" enough to the root.

2) The number of iterations or the accuracy needed

Output: An approximation to the root of f(x) near x_0, x_1

Convergence: Doesn't always converge. Converges if x_0 is close enough to the root. and the rate of convergence is quadratic (if the root is not a multiple root-slower convergence for multiple roots).

$$h = f(x_n)$$
$$g(x_n) = \frac{f(x_n + h) - f(x_n)}{h}$$
$$x_{n+1} = x_n - \frac{f(x_n)}{g(x_n)}$$

FIXED POINT METHOD

Input: A differentiable function g and a point x_0

Output: An approximation to the fixed point of g(x)

Convergence: Doesn't always converge.

Converges if

- a) g maps an interval [a, b] to itself.
- b) g is "contracting" that is |g'(x)| < k, k < 1

The convergence is linear.

$$|x - x_{n+1}| < k|x - x_n|,$$

$$x_{n+1} = g(x_n)$$

AITKEN'S Δ^2 METHOD

Input: A linearly convergent sequence p_n with $\lim_{n\to\infty} \frac{p-p_n}{p-p_{n+1}} < 1$ **Output:** A sequence \hat{p}_n which converges faster than p_n to p**Definition** The forward difference

$$\Delta p_n = p_{n+1} - p_n$$
$$\Delta^2 p_n = \Delta(\Delta p_n) = p_{n+2} - 2p_{n+1} + p_n$$

$$\hat{p}_n = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$
$$\hat{p}_n = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n}$$